Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
International Journal of Oral Science ; (4): 14-14, 2023.
Article in English | WPRIM | ID: wpr-971602

ABSTRACT

Tooth germ injury can lead to abnormal tooth development and even tooth loss, affecting various aspects of the stomatognathic system including form, function, and appearance. However, the research about tooth germ injury model on cellular and molecule mechanism of tooth germ repair is still very limited. Therefore, it is of great importance for the prevention and treatment of tooth germ injury to study the important mechanism of tooth germ repair by a tooth germ injury model. Here, we constructed a Tg(dlx2b:Dendra2-NTR) transgenic line that labeled tooth germ specifically. Taking advantage of the NTR/Mtz system, the dlx2b+ tooth germ cells were depleted by Mtz effectively. The process of tooth germ repair was evaluated by antibody staining, in situ hybridization, EdU staining and alizarin red staining. The severely injured tooth germ was repaired in several days after Mtz treatment was stopped. In the early stage of tooth germ repair, the expression of phosphorylated 4E-BP1 was increased, indicating that mTORC1 is activated. Inhibition of mTORC1 signaling in vitro or knockdown of mTORC1 signaling in vivo could inhibit the repair of injured tooth germ. Normally, mouse incisors were repaired after damage, but inhibition/promotion of mTORC1 signaling inhibited/promoted this repair progress. Overall, we are the first to construct a stable and repeatable repair model of severe tooth germ injury, and our results reveal that mTORC1 signaling plays a crucial role during tooth germ repair, providing a potential target for clinical treatment of tooth germ injury.


Subject(s)
Animals , Mice , Mechanistic Target of Rapamycin Complex 1/pharmacology , Signal Transduction , Tooth/metabolism , Tooth Germ/metabolism , Odontogenesis
2.
Journal of Zhejiang University. Science. B ; (12): 397-405, 2023.
Article in English | WPRIM | ID: wpr-982380

ABSTRACT

Mammalian target of rapamycin (mTOR) controls cellular anabolism, and mTOR signaling is hyperactive in most cancer cells. As a result, inhibition of mTOR signaling benefits cancer patients. Rapamycin is a US Food and Drug Administration (FDA)-approved drug, a specific mTOR complex 1 (mTORC1) inhibitor, for the treatment of several different types of cancer. However, rapamycin is reported to inhibit cancer growth rather than induce apoptosis. Pyruvate dehydrogenase complex (PDHc) is the gatekeeper for mitochondrial pyruvate oxidation. PDHc inactivation has been observed in a number of cancer cells, and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide (NAD+‍) exhaustion. In this paper, we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells. This inactivation reduces the sensitivity of cancer cells' response to rapamycin. As a result, rebooting PDHc activity with dichloroacetic acid (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, promotes cancer cells' susceptibility to rapamycin treatment in vitro and in vivo.


Subject(s)
Humans , Sirolimus/pharmacology , Dichloroacetic Acid/pharmacology , Pyruvate Dehydrogenase Complex , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 1 , Neoplasms/drug therapy
3.
Chinese Journal of Medical Genetics ; (6): 887-891, 2023.
Article in Chinese | WPRIM | ID: wpr-981842

ABSTRACT

The GATOR1 complex is located at the upstream of the mTOR signal pathway and can regulate the function of mTORC1. Genetic variants of the GATOR1 complex are closely associated with epilepsy, developmental delay, cerebral cortical malformation and tumor. This article has reviewed the research progress in diseases associated with genetic variants of the GATOR1 complex, with the aim to provide a reference for the diagnosis and treatment of such patients.


Subject(s)
Humans , GTPase-Activating Proteins/metabolism , Signal Transduction/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Epilepsy/genetics , Neoplasms
4.
China Journal of Orthopaedics and Traumatology ; (12): 357-363, 2023.
Article in Chinese | WPRIM | ID: wpr-981697

ABSTRACT

Osteoclast (OC) is multinucleated, bone-resorbing cells originated from monocyte/macrophage lineage of cells, excessive production and abnormal activation of which could lead to many bone metabolic diseases, such as osteoporosis, osteoarthritis, etc. Autophagy, as a highly conserved catabolic process in eukaryotic cells, which plays an important role in maintaining cell homeostasis, stress damage repair, proliferation and differentiation. Recent studies have found that autophagy was also involved in the regulation of osteoclast generation and bone resorption. On the one hand, autophagy could be induced and activated by various factors in osteocalsts, such as nutrient deficiency, hypoxia, receptor activator of nuclear factor(NF)-κB ligand(RANKL), inflammatory factors, wear particles, microgravity environment, etc, different inducible factors, such as RANKL, inflammatory factors, wear particles, could interact with each other and work together. On the other hand, activated autophagy is involved in regulating various stages of osteoclast differentiation and maturation, autophagy could promote proliferation of osteoclasts, inhibiting apoptosis, and promoting differentiation, migration and bone resorption of osteoclast. The classical autophagy signaling pathway mediated by mammalian target of rapamycin complex 1(mTORC1) is currently a focus of research, and it could be regulated by upstream signalings such as phosphatidylinositol 3 kinase(PI-3K)/protein kinase B (PKB), AMP-activated protein kinase(AMPK). However, the paper found that mTORC1-mediated autophagy may play a bidirectional role in regulating differentiation and function of osteoclasts, and its underlying mechanism needs to be further ciarified. Integrin αvβ3 and Rab protein families are important targets for autophagy to play a role in osteoclast migration and bone resorption, respectively. In view of important role of osteoclast in the occurrence of various bone diseases, it is of great significance to elucidate the role of autophagy on osteoclast and its mechanism for the treatment of various bone diseases. The autophagy pathway could be used as a new therapeutic target for the treatment of clinical bone diseases such as osteoporosis.


Subject(s)
Humans , Osteoclasts , Bone Resorption/metabolism , Cell Differentiation , NF-kappa B/metabolism , Autophagy , Osteoporosis , Mechanistic Target of Rapamycin Complex 1/metabolism , RANK Ligand/metabolism
5.
Chinese Journal of Biotechnology ; (12): 1747-1758, 2023.
Article in Chinese | WPRIM | ID: wpr-981167

ABSTRACT

The gastrointestinal tract is the largest digestive organ and the largest immune organ and detoxification organ, which is vital to the health of the body. Drosophila is a classic model organism, and its gut is highly similar to mammalian gut in terms of cell composition and genetic regulation, therefore can be used as a good model for studying gut development. target of rapmaycin complex 1 (TORC1) is a key factor regulating cellular metabolism. Nprl2 inhibits TORC1 activity by reducing Rag GTPase activity. Previous studies have found that nprl2 mutated Drosophila showed aging-related phenotypes such as enlarged foregastric and reduced lifespan, which were caused by over-activation of TORC1. In order to explore the role of Rag GTPase in the developmental defects of the gut of nprl2 mutated Drosophila, we used genetic hybridization combined with immunofluorescence to study the intestinal morphology and intestinal cell composition of RagA knockdown and nprl2 mutated Drosophila. The results showed that RagA knockdown alone could induce intestinal thickening and forestomach enlargement, suggesting that RagA also plays an important role in intestinal development. Knockdown of RagA rescued the phenotype of intestinal thinning and decreased secretory cells in nprl2 mutants, suggesting that Nprl2 may regulate the differentiation and morphology of intestinal cells by acting on RagA. Knockdown of RagA did not rescue the enlarged forestomach phenotype in nprl2 mutants, suggesting that Nprl2 may regulate forestomach development and intestinal digestive function through a mechanism independent of Rag GTPase.


Subject(s)
Animals , Drosophila/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mammals/metabolism , Carrier Proteins , Tumor Suppressor Proteins/metabolism , Drosophila Proteins/genetics
6.
Journal of Southern Medical University ; (12): 598-603, 2022.
Article in Chinese | WPRIM | ID: wpr-936353

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effect of AZD2014, a dual mTORC1/2 inhibitor, against acute graft rejection in a rat model of allogeneic liver transplantation.@*METHODS@#Liver transplantation from Lewis rat to recipient BN rat (a donor-recipient combination that was prone to induce acute graft rejection) was performed using Kamada's two-cuff technique. The recipient BN rats were randomized into 2 groups for treatment with daily intraperitoneal injection of AZD2014 (5 mg/kg, n=4) or vehicle (2.5 mL/kg, n=4) for 14 consecutive days, starting from the first day after the transplantation. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) levels of the rats were measured 3 days before and at 1, 3, 5, 7, 10, and 14 days after the transplantation, and the survival time of the rats within 14 days were recorded. Immunohistochemical staining was used to examine the expressions of CD3 and Foxp3 in the liver graft, and acute graft rejection was assessed using HE staining based on the Banff schema.@*RESULTS@#Three rats in the control group died within 14 days after the surgery, while no death occurred in the AZD2014 group, demonstrating a significantly longer survival time of the rats in AZD2014 group (χ2=4.213, P=0.04). Serum ALT, AST and TBIL levels in the control group increased progressively after the surgery and were all significantly higher than those in AZD2014 group at the same time point (P < 0.05). Pathological examination revealed significantly worse liver graft rejection in the control group than in AZD2014 group based on assessment of the rejection index (P < 0.01); the rats in the control group showed more serious T lymphocyte infiltration and significantly fewer Treg cells in the liver graft than those in AZD2014 group (P < 0.01).@*CONCLUSIONS@#AZD2014 can effectively inhibit acute graft rejection in rats with allogeneic liver transplantation.


Subject(s)
Animals , Rats , Benzamides , Graft Rejection/prevention & control , Graft Survival , Liver/pathology , Liver Transplantation , Mechanistic Target of Rapamycin Complex 1 , Morpholines , Pyrimidines , Rats, Inbred Lew
7.
Acta Physiologica Sinica ; (6): 225-236, 2022.
Article in Chinese | WPRIM | ID: wpr-927598

ABSTRACT

This study was to investigate the changes of autophagy in pancreatic tissue cells from hyperlipidemic acute pancreatitis (HLAP) rats and the molecular mechanism of autophagy to induce inflammatory injury in pancreatic tissue cells. Male Sprague Dawley (SD) rats were intraperitoneally injected with caerulein to establish acute pancreatitis (AP) model and then given a high fat diet to further prepare HLAP model. The HLAP rats were treated with autophagy inducer rapamycin or inhibitor 3-methyladenine. Pancreatic acinar (AR42J) cells were treated with caerulein to establish HLAP cell model. The HLAP cell model were treated with rapamycin or transfected with vascular endothelial growth factor (VEGF) siRNA. The inflammatory factors in serum and cell culture supernatant were detected by ELISA method. The histopathological changes of pancreatic tissue were observed by HE staining. The changes of ultrastructure and autophagy in pancreatic tissue were observed by electron microscopy. The expression levels of Beclin-1, microtubule- associated protein light chain 3-II (LC3-II), mammalian target of rapamycin complex 1 (mTORC1), and VEGF were measured by immunohistochemistry and Western blot. The results showed that, compared with control group, the autophagy levels and inflammatory injury of pancreatic tissue cells from HLAP model rats were obviously increased, and these changes were aggravated by rapamycin treatment, but alleviated by 3-methyladenine treatment. In HLAP cell model, rapamycin aggravated the autophagy levels and inflammatory injury, whereas VEGF siRNA transfection increased mTORC1 protein expression, thus alleviating the autophagy and inflammatory injury of HLAP cell model. These results suggest that VEGF-induced autophagy plays a key role in HLAP pancreatic tissue cell injury, and interference with VEGF-mTORC1 pathway can reduce the autophagy levels and alleviate the inflammatory injury. The present study provides a new target for prevention and treatment of HLAP.


Subject(s)
Animals , Male , Rats , Acute Disease , Autophagy , Ceruletide/adverse effects , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1 , Microtubule-Associated Proteins/metabolism , Pancreatitis , RNA, Small Interfering/genetics , Rats, Sprague-Dawley , Sirolimus/adverse effects , Vascular Endothelial Growth Factor A/genetics
8.
Chinese Medical Journal ; (24): 837-848, 2022.
Article in English | WPRIM | ID: wpr-927571

ABSTRACT

BACKGROUND@#Pulmonary microvascular endothelial cells (PMVECs) were not complex, and the endothelial barrier was destroyed in the pathogenesis progress of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Previous studies have demonstrated that hepatocyte growth factor (HGF), which was secreted by bone marrow mesenchymal stem cells, could decrease endothelial apoptosis. We investigated whether mTOR/STAT3 signaling acted in HGF protective effects against oxidative stress and mitochondria-dependent apoptosis in lipopolysaccharide (LPS)-induced endothelial barrier dysfunction and ALI mice.@*METHODS@#In our current study, we introduced LPS-induced PMEVCs with HGF treatment. To investigate the effects of mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway in endothelial oxidative stress and mitochondria-dependent apoptosis, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 were, respectively, used to inhibit mTOR/STAT3 signaling. Moreover, lentivirus vector-mediated mTORC1 (Raptor) and mTORC2 (Rictor) gene knockdown modifications were introduced to evaluate mTORC1 and mTORC1 pathways. Calcium measurement, reactive oxygen species (ROS) production, mitochondrial membrane potential and protein, cell proliferation, apoptosis, and endothelial junction protein were detected to evaluate HGF effects. Moreover, we used the ALI mouse model to observe the mitochondria pathological changes with an electron microscope in vivo.@*RESULTS@#Our study demonstrated that HGF protected the endothelium via the suppression of ROS production and intracellular calcium uptake, which lead to increased mitochondrial membrane potential (JC-1 and mitochondria tracker green detection) and specific proteins (complex I), raised anti-apoptosis Messenger Ribonucleic Acid level (B-cell lymphoma 2 and Bcl-xL), and increased endothelial junction proteins (VE-cadherin and occludin). Reversely, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 could raise oxidative stress and mitochondria-dependent apoptosis even with HGF treatment in LPS-induced endothelial cells. Similarly, mTORC1 as well as mTORC2 have the same protective effects in mitochondria damage and apoptosis. In in vivo experiments of ALI mouse, HGF also increased mitochondria structural integrity via the mTOR/STAT3 pathway.@*CONCLUSION@#In all, these reveal that mTOR/STAT3 signaling mediates the HGF suppression effects to oxidative level, mitochondria-dependent apoptosis, and endothelial junction protein in ARDS, contributing to the pulmonary endothelial survival and barrier integrity.


Subject(s)
Animals , Mice , Apoptosis , Calcium/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Hepatocyte Growth Factor/metabolism , Lipopolysaccharides/pharmacology , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Respiratory Distress Syndrome, Newborn , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
9.
Braz. j. med. biol. res ; 54(5): e10185, 2021. graf
Article in English | LILACS | ID: biblio-1153547

ABSTRACT

Lumbar disc herniation is a common disease characterized by the degeneration of intervertebral discs (IVDs), accompanied by imbalance of metabolic and inflammatory homeostasis. Current studies establish that IVD degeneration is induced by increased apoptosis of nucleus pulposus (NP) cells. However, the underlying mechanisms of NP cell survival/apoptosis are not well elucidated. Here, we reveal a novel mechanism by which mTORC1 signaling controls NP cell survival through regulating metabolic homeostasis. We demonstrated that hyperactivated mTORC1 activity induced by inflammatory cytokines engenders the apoptosis of NP cells, whereas pharmacological inhibition of mTORC1 activity promotes NP cell survival. Using an integrative approach spanning metabolomics and biochemical approaches, we showed that mTORC1 activation enhanced glucose metabolism and lactic acid production, and therefore caused NP cell apoptosis. Our study identified mTORC1 in NP cells as a novel target for IVD degeneration, and provided potential strategies for clinical intervention of lumbar disc herniation.


Subject(s)
Humans , Intervertebral Disc Degeneration/drug therapy , Nucleus Pulposus , Apoptosis , Mechanistic Target of Rapamycin Complex 1 , Inflammation/drug therapy
10.
Braz. j. med. biol. res ; 54(10): e11391, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285650

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), characterized by hepatosteatosis and steatohepatitis, is intrinsically related to obesity. Our previous study reported on the anti-obese activity of α,β-amyrin (AMY), a pentacyclic triterpene isolated from Protium heptaphyllum. This study investigated its ability to prevent fatty liver and the underlying mechanism using the mouse model of NAFLD. NAFLD was induced in male Swiss mice fed a high fat diet (HFD) for 15 weeks. The controls were fed a normal chow diet (ND). The mice were simultaneously treated with AMY at 10 and 20 mg/kg or fenofibrate at 50 mg/kg. Lipid levels along with metabolic and inflammatory parameters were assessed in liver and serum. The liver sections were histologically examined using H&E staining. RT-qPCR and western blotting assays were performed to analyze signaling mechanisms. Mice fed HFD developed severe hepatic steatosis with elevated triglycerides and lipid droplets compared with ND controls. This was associated with a decrease in AMP-activated protein kinase (AMPK) activity, an increase of mechanistic target of rapamycin complex 1 (mTORC1) signaling, and enhanced sterol regulatory element binding protein 1 (SREBP1) expression, which have roles in lipogenesis, inhibition of lipolysis, and inflammatory response. AMY treatment reversed these signaling activities and decreased the severity of hepatic steatosis and inflammatory response, evidenced by serum and liver parameters as well as histological findings. AMY-induced reduction in hepatic steatosis seemed to involve AMPK-mTORC1-SREBP1 signaling pathways, which supported its beneficial role in the prevention and treatment of NAFLD.


Subject(s)
Animals , Male , Rabbits , Insulin Resistance , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/drug therapy , Oleanolic Acid/analogs & derivatives , Sterol Regulatory Element Binding Protein 1 , AMP-Activated Protein Kinases , Diet, High-Fat/adverse effects , Mechanistic Target of Rapamycin Complex 1 , Liver , Mice, Inbred C57BL
11.
Journal of Central South University(Medical Sciences) ; (12): 685-690, 2018.
Article in Chinese | WPRIM | ID: wpr-813210

ABSTRACT

Prolin-rich Akt substrate of 40 kD (PRAS40) is firstly identified as a partner of 14-3-3 protein and a substrate of Akt kinase by Roth et al in 2003. Accumulated evidence shows that PRAS40 is mainly activated by phosphorylate modification at different sites. PRAS40 may be involved in various of signaling pathways, such as mammalian target of rapamycin complex 1 (mTORC1), protein kinase B (Akt), NF-κB and ribosomal protein L11 (RPL11) etc, which can regulate cell proliferation, senescence, autophagy, apoptosis and exosome secretion.


Subject(s)
Humans , Adaptor Proteins, Signal Transducing , Metabolism , Mechanistic Target of Rapamycin Complex 1 , Metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt , Metabolism , TOR Serine-Threonine Kinases , Metabolism
12.
Protein & Cell ; (12): 145-151, 2018.
Article in English | WPRIM | ID: wpr-756988

ABSTRACT

The mechanistic target of rapamycin (mTOR) signaling pathway regulates many metabolic and physiological processes in different organs or tissues. Dysregulation of mTOR signaling has been implicated in many human diseases including obesity, diabetes, cancer, fatty liver diseases, and neuronal disorders. Here we review recent progress in understanding how mTORC1 (mTOR complex 1) signaling regulates lipid metabolism in the liver.


Subject(s)
Animals , Humans , Lipid Metabolism , Lipogenesis , Liver , Cell Biology , Metabolism , Pathology , Mechanistic Target of Rapamycin Complex 1 , Metabolism , Signal Transduction
13.
Einstein (Säo Paulo) ; 15(4): 507-511, Oct.-Dec. 2017. graf
Article in English | LILACS | ID: biblio-891425

ABSTRACT

ABSTRACT Obesity is characterized by an excessive increase in the adipose tissue mass, and is associated with higher incidence of several chronic metabolic diseases, such as type 2 diabetes. Therefore, its increasing prevalence is a public health concern, and it is important to better understand its etiology to develop new therapeutic strategies. Evidence accumulated over the years indicates that obesity is associated with a marked activation in adipose tissue of the mechanistic target of rapamycin complex 1 (mTORC1), a signaling pathway that controls lipid metabolism, and adipocyte formation and maintenance. Curiously, mTORC1 is also involved in the control of nonshivering thermogenesis and recruitment as well as browning of white adipose tissue. In this review, we explored mTORC1 functions in adipocytes and presented evidence, suggesting that mTORC1 may either increase or reduce adiposity, depending on the conditions and activation levels.


RESUMO A obesidade é caracterizada pelo aumento excessivo da massa de tecido adiposo, estando associada à maior incidência de diversas doenças metabólicas crônicas, como diabetes tipo 2. Sua crescente prevalência é uma questão de saúde pública, e faz-se importante compreender melhor sua etiologia, para desenvolver novas estratégias terapêuticas. As evidências acumuladas por muitos anos indicam que a obesidade está associada à significativa ativação no tecido adiposo do complexo 1 da proteína alvo mecanístico da rapamicina (mTORC1), uma via de sinalização que regula o metabolismo de lipídeos, bem como a formação e manutenção de adipócitos. Curiosamente, mTORC1 também está envolvido no controle da termogênese, independente do tremor muscular, e no recrutamento e browning de tecido adiposo branco. Nesta revisão, exploramos as diferentes funções do mTORC1 em adipócitos e apresentamos evidências que sugerem que o mTORC1 pode aumentar ou reduzir a adiposidade, dependendo das condições e de seu nível de ativação.


Subject(s)
Humans , Animals , Adiposity/physiology , Mechanistic Target of Rapamycin Complex 1/physiology , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipocytes/metabolism , Thermogenesis/physiology , Diabetes Mellitus, Type 2/metabolism , Lipid Metabolism/physiology , Adipose Tissue, White/metabolism
14.
Protein & Cell ; (12): 878-887, 2016.
Article in English | WPRIM | ID: wpr-757348

ABSTRACT

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates signals from growth factors, cellular energy levels, stress and amino acids to control cell growth and proliferation through regulating translation, autophagy and metabolism. Here we determined the cryo-electron microscopy structure of human mTORC1 at 4.4 Å resolution. The mTORC1 comprises a dimer of heterotrimer (mTOR-Raptor-mLST8) mediated by the mTOR protein. The complex adopts a hollow rhomboid shape with 2-fold symmetry. Notably, mTORC1 shows intrinsic conformational dynamics. Within the complex, the conserved N-terminal caspase-like domain of Raptor faces toward the catalytic cavity of the kinase domain of mTOR. Raptor shows no caspase activity and therefore may bind to TOS motif for substrate recognition. Structural analysis indicates that FKBP12-Rapamycin may generate steric hindrance for substrate entry to the catalytic cavity of mTORC1. The structure provides a basis to understand the assembly of mTORC1 and a framework to characterize the regulatory mechanism of mTORC1 pathway.


Subject(s)
Humans , Cell Line , Cryoelectron Microscopy , Methods , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes , Chemistry , Protein Structure, Quaternary , TOR Serine-Threonine Kinases , Chemistry
15.
Protein & Cell ; (12): 171-177, 2014.
Article in English | WPRIM | ID: wpr-757517

ABSTRACT

Mammalian target of rapamycin (mTOR) plays essential roles in cell proliferation, survival and metabolism by forming at least two functional distinct multi-protein complexes, mTORC1 and mTORC2. External growth signals can be received and interpreted by mTORC2 and further transduced to mTORC1. On the other hand, mTORC1 can sense inner-cellular physiological cues such as amino acids and energy states and can indirectly suppress mTORC2 activity in part through phosphorylation of its upstream adaptors, IRS-1 or Grb10, under insulin or IGF-1 stimulation conditions. To date, upstream signaling pathways governing mTORC1 activation have been studied extensively, while the mechanisms modulating mTORC2 activity remain largely elusive. We recently reported that Sin1, an essential mTORC2 subunit, was phosphorylated by either Akt or S6K in a cellular context-dependent manner. More importantly, phosphorylation of Sin1 at T86 and T398 led to a dissociation of Sin1 from the functional mTORC2 holo-enzyme, resulting in reduced Akt activity and sensitizing cells to various apoptotic challenges. Notably, an ovarian cancer patient-derived Sin1-R81T mutation abolished Sin1-T86 phosphorylation by disrupting the canonical S6K-phoshorylation motif, thereby bypassing Sin1-phosphorylation-mediated suppression of mTORC2 and leading to sustained Akt signaling to promote tumorigenesis. Our work therefore provided physiological and pathological evidence to reveal the biological significance of Sin1 phosphorylation-mediated suppression of the mTOR/Akt oncogenic signaling, and further suggested that misregulation of this process might contribute to Akt hyper-activation that is frequently observed in human cancers.


Subject(s)
Animals , Humans , Adaptor Proteins, Signal Transducing , Metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Models, Biological , Multiprotein Complexes , Metabolism , Phosphorylation , Phosphothreonine , Metabolism , TOR Serine-Threonine Kinases , Metabolism
16.
National Journal of Andrology ; (12): 1068-1071, 2013.
Article in Chinese | WPRIM | ID: wpr-267987

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the roles of the mammalian target of rapamycin-1 and -2 (mTORC1 and TORC2) in the proliferation and apoptosis of prostate cancer 22RV1 cells.</p><p><b>METHODS</b>After silencing mTORC1 and TORC2, we examined the proliferation and apoptosis of prostate cancer 22RV1 cells by methylthiazol tetrazolium (MTT) assay and flow cytometry, respectively, and detected the expressions of the androgen receptor (AR) and Akt phosphorylation in the prostate cancer 22RV1 cells by Western blot after transfecting Raptor-siRNA and Rictor-siRNA to the 22RV1 cells.</p><p><b>RESULTS</b>MTT showed that the prostate cancer 22RV1 cells had no significant change in the growth rate after mTORC1 silence (P > 0.05), but their proliferation was markedly inhibited after mTORC2 silence (P < 0.01). Flow cytometry revealed a dramatic increase in the apoptosis of the 22RV1 cells after mTORC1 silence (P < 0.01), but no obvious change after mTORC2 silence (P > 0.05). Western blot exhibited that mTORC1 silence significantly increased the expression of AR and Akt phosphorylation (P < 0.05), while mTORC2 silence markedly decreased them (P < 0.05).</p><p><b>CONCLUSION</b>mTORC2 is not only required for the survival of prostate cancer 22RV1 cells, but also a promising therapeutic target of prostate cancer.</p>


Subject(s)
Humans , Male , Apoptosis , Cell Line, Tumor , Cell Proliferation , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Multiprotein Complexes , Metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt , Metabolism , Receptors, Androgen , Metabolism , Sirolimus , Pharmacology , TOR Serine-Threonine Kinases , Metabolism
17.
Chinese Journal of Cancer ; (12): 427-433, 2013.
Article in English | WPRIM | ID: wpr-320585

ABSTRACT

Mammalian target of rapamycin (mTOR) is aberrantly activated in many cancer types, and two rapamycin derivatives are currently approved by the Food and Drug Administration (FDA) of the United States for treating renal cell carcinoma. Mechanistically, mTOR is hyperactivated in human cancers either due to the genetic activation of its upstream activating signaling pathways or the genetic inactivation of its negative regulators. The tumor suppressor liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11), is involved in cell polarity, cell detachment and adhesion, tumor metastasis, and energetic stress response. A key role of LKB1 is to negatively regulate the activity of mTOR complex 1 (mTORC1). This review summarizes the molecular basis of this negative interaction and recent research progress in this area.


Subject(s)
Animals , Female , Humans , AMP-Activated Protein Kinases , Metabolism , Adenocarcinoma , Drug Therapy , Metabolism , Antibiotics, Antineoplastic , Therapeutic Uses , Disease Models, Animal , Endometrial Neoplasms , Drug Therapy , Metabolism , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes , Metabolism , Phosphatidylinositol 3-Kinases , Metabolism , Protein Serine-Threonine Kinases , Metabolism , Proto-Oncogene Proteins c-akt , Metabolism , Signal Transduction , Sirolimus , Therapeutic Uses , TOR Serine-Threonine Kinases , Metabolism , Tumor Suppressor Proteins , Metabolism
18.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 810-816, 2013.
Article in English | WPRIM | ID: wpr-251389

ABSTRACT

Autophagy is a conserved and programmed catabolic process that degrades damaged proteins and organelles. But the underlying mechanism and functions of autophagy in the ischemia-reperfusion (IR)-induced injury are unknown. In this study, we employed simulated IR of N2a cells as an in vitro model of IR injury to the neurons and monitored autophagic processes. It was found that the levels of Beclin-1 (a key molecule of autophay complex, Beclin-1/class III PI3K) and LC-3II (an autophagy marker) were remarkably increased with time during the process of ischemia and the process of reperfusion after 90 min of ischemia, while the protein kinases p70S6K and mTOR which are involved in autophagy regulation showed delayed inactivation after reperfusion. Administration of 3-methyladenine (3MA), an inhibitor of class III PI3K, abolished autophagy during reperfusion, while employment of rapamycin, an inhibitor of mTORC1 (normally inducing autophagy), surprisingly weakened the induction of autophagy during reperfusion. Analyses of mitochondria function by relative cell viability demonstrated that autophagy inhibition by 3-MA attenuated the decline of mitochondria function during reperfusion. Our data demonstrated that there were two distinct dynamic patterns of autophagy during IR-induced N2a injury, Beclin-1/class III PI3K complex-dependent and mTORC1-dependent. Inhibition of over-autophagy improved cell survival. These suggest that targeting autophagy therapy will be a novel strategy to control IR-induced neuronal damage.


Subject(s)
Animals , Mice , Adenine , Pharmacology , Apoptosis Regulatory Proteins , Genetics , Metabolism , Autophagy , Beclin-1 , Cell Line, Tumor , Cell Survival , Mechanistic Target of Rapamycin Complex 1 , Mitochondria , Metabolism , Multiprotein Complexes , Metabolism , Neurons , Metabolism , Neuroprotective Agents , Pharmacology , Phosphatidylinositol 3-Kinases , Metabolism , Reperfusion Injury , Metabolism , Sirolimus , Pharmacology , TOR Serine-Threonine Kinases , Metabolism
19.
Chinese Journal of Cancer ; (12): 8-18, 2012.
Article in English | WPRIM | ID: wpr-294462

ABSTRACT

The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, acts as a "master switch" for cellular anabolic and catabolic processes, regulating the rate of cell growth and proliferation. Dysregulation of the mTOR signaling pathway occurs frequently in a variety of human tumors, and thus, mTOR has emerged as an important target for the design of anticancer agents. mTOR is found in two distinct multiprotein complexes within cells, mTORC1 and mTORC2. These two complexes consist of unique mTOR-interacting proteins and are regulated by different mechanisms. Enormous advances have been made in the development of drugs known as mTOR inhibitors. Rapamycin, the first defined inhibitor of mTOR, showed effectiveness as an anticancer agent in various preclinical models. Rapamycin analogues (rapalogs) with better pharmacologic properties have been developed. However, the clinical success of rapalogs has been limited to a few types of cancer. The discovery that mTORC2 directly phosphorylates Akt, an important survival kinase, adds new insight into the role of mTORC2 in cancer. This novel finding prompted efforts to develop the second generation of mTOR inhibitors that are able to target both mTORC1 and mTORC2. Here, we review the recent advances in the mTOR field and focus specifically on the current development of the second generation of mTOR inhibitors as anticancer agents.


Subject(s)
Humans , Antineoplastic Agents , Pharmacology , Cell Proliferation , Furans , Pharmacology , Imidazoles , Pharmacology , Indoles , Pharmacology , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Morpholines , Pharmacology , Multiprotein Complexes , Naphthyridines , Pharmacology , Neoplasms , Pathology , Phosphatidylinositol 3-Kinases , Metabolism , Proto-Oncogene Proteins c-akt , Metabolism , Purines , Pharmacology , Pyridines , Pharmacology , Pyrimidines , Pharmacology , Quinolines , Pharmacology , Signal Transduction , Sirolimus , Pharmacology , TOR Serine-Threonine Kinases
20.
Chinese Journal of Cancer ; (12): 178-184, 2012.
Article in English | WPRIM | ID: wpr-294437

ABSTRACT

Niclosamide, an oral antihelminthic drug, has been used to treat tapeworm infection for about 50 years. Niclosamide is also used as a molluscicide for water treatment in schistosomiasis control programs. Recently, several groups have independently discovered that niclosamide is also active against cancer cells, but its precise mechanism of antitumor action is not fully understood. Evidence supports that niclosamide targets multiple signaling pathways (NF-κB, Wnt/β-catenin, Notch, ROS, mTORC1, and Stat3), most of which are closely involved with cancer stem cells. The exciting advances in elucidating the antitumor activity and the molecular targets of this drug will be discussed. A method for synthesizing a phosphate pro-drug of niclosamide is provided. Given its potential antitumor activity, clinical trials for niclosamide and its derivatives are warranted for cancer treatment.


Subject(s)
Animals , Humans , Antineoplastic Agents , Pharmacokinetics , Pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes , Metabolism , NF-kappa B , Metabolism , Neoplasm Metastasis , Neoplasms , Metabolism , Pathology , Neoplastic Stem Cells , Niclosamide , Pharmacokinetics , Pharmacology , Reactive Oxygen Species , Metabolism , Receptors, Notch , Metabolism , STAT3 Transcription Factor , Metabolism , Signal Transduction , TOR Serine-Threonine Kinases , Metabolism , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL